\(\int \frac {\log (c x)}{x^3} \, dx\) [7]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [A] (verification not implemented)
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 8, antiderivative size = 19 \[ \int \frac {\log (c x)}{x^3} \, dx=-\frac {1}{4 x^2}-\frac {\log (c x)}{2 x^2} \]

[Out]

-1/4/x^2-1/2*ln(c*x)/x^2

Rubi [A] (verified)

Time = 0.00 (sec) , antiderivative size = 19, normalized size of antiderivative = 1.00, number of steps used = 1, number of rules used = 1, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.125, Rules used = {2341} \[ \int \frac {\log (c x)}{x^3} \, dx=-\frac {\log (c x)}{2 x^2}-\frac {1}{4 x^2} \]

[In]

Int[Log[c*x]/x^3,x]

[Out]

-1/4*1/x^2 - Log[c*x]/(2*x^2)

Rule 2341

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[(d*x)^(m + 1)*((a + b*Log[c*x^
n])/(d*(m + 1))), x] - Simp[b*n*((d*x)^(m + 1)/(d*(m + 1)^2)), x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[m, -1
]

Rubi steps \begin{align*} \text {integral}& = -\frac {1}{4 x^2}-\frac {\log (c x)}{2 x^2} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.00 (sec) , antiderivative size = 19, normalized size of antiderivative = 1.00 \[ \int \frac {\log (c x)}{x^3} \, dx=-\frac {1}{4 x^2}-\frac {\log (c x)}{2 x^2} \]

[In]

Integrate[Log[c*x]/x^3,x]

[Out]

-1/4*1/x^2 - Log[c*x]/(2*x^2)

Maple [A] (verified)

Time = 0.02 (sec) , antiderivative size = 13, normalized size of antiderivative = 0.68

method result size
norman \(\frac {-\frac {1}{4}-\frac {\ln \left (x c \right )}{2}}{x^{2}}\) \(13\)
parallelrisch \(\frac {-1-2 \ln \left (x c \right )}{4 x^{2}}\) \(14\)
risch \(-\frac {1}{4 x^{2}}-\frac {\ln \left (x c \right )}{2 x^{2}}\) \(16\)
parts \(-\frac {1}{4 x^{2}}-\frac {\ln \left (x c \right )}{2 x^{2}}\) \(16\)
derivativedivides \(c^{2} \left (-\frac {\ln \left (x c \right )}{2 x^{2} c^{2}}-\frac {1}{4 x^{2} c^{2}}\right )\) \(26\)
default \(c^{2} \left (-\frac {\ln \left (x c \right )}{2 x^{2} c^{2}}-\frac {1}{4 x^{2} c^{2}}\right )\) \(26\)

[In]

int(ln(x*c)/x^3,x,method=_RETURNVERBOSE)

[Out]

(-1/4-1/2*ln(x*c))/x^2

Fricas [A] (verification not implemented)

none

Time = 0.29 (sec) , antiderivative size = 13, normalized size of antiderivative = 0.68 \[ \int \frac {\log (c x)}{x^3} \, dx=-\frac {2 \, \log \left (c x\right ) + 1}{4 \, x^{2}} \]

[In]

integrate(log(c*x)/x^3,x, algorithm="fricas")

[Out]

-1/4*(2*log(c*x) + 1)/x^2

Sympy [A] (verification not implemented)

Time = 0.04 (sec) , antiderivative size = 17, normalized size of antiderivative = 0.89 \[ \int \frac {\log (c x)}{x^3} \, dx=- \frac {\log {\left (c x \right )}}{2 x^{2}} - \frac {1}{4 x^{2}} \]

[In]

integrate(ln(c*x)/x**3,x)

[Out]

-log(c*x)/(2*x**2) - 1/(4*x**2)

Maxima [A] (verification not implemented)

none

Time = 0.18 (sec) , antiderivative size = 15, normalized size of antiderivative = 0.79 \[ \int \frac {\log (c x)}{x^3} \, dx=-\frac {\log \left (c x\right )}{2 \, x^{2}} - \frac {1}{4 \, x^{2}} \]

[In]

integrate(log(c*x)/x^3,x, algorithm="maxima")

[Out]

-1/2*log(c*x)/x^2 - 1/4/x^2

Giac [A] (verification not implemented)

none

Time = 0.34 (sec) , antiderivative size = 15, normalized size of antiderivative = 0.79 \[ \int \frac {\log (c x)}{x^3} \, dx=-\frac {\log \left (c x\right )}{2 \, x^{2}} - \frac {1}{4 \, x^{2}} \]

[In]

integrate(log(c*x)/x^3,x, algorithm="giac")

[Out]

-1/2*log(c*x)/x^2 - 1/4/x^2

Mupad [B] (verification not implemented)

Time = 0.03 (sec) , antiderivative size = 11, normalized size of antiderivative = 0.58 \[ \int \frac {\log (c x)}{x^3} \, dx=-\frac {\ln \left (c\,x\right )+\frac {1}{2}}{2\,x^2} \]

[In]

int(log(c*x)/x^3,x)

[Out]

-(log(c*x) + 1/2)/(2*x^2)